Epithelial-mesenchymal transition in penile squamous cell carcinomas

Emili Masferrer, MD,^a Carla Ferrándiz-Pulido, MD,^b Magalí Masferrer-Niubò,^c Alfredo Rodríguez-Rodríguez, MD,^d Inmaculada Gil, MD,^e Antoni Pont, MD,^f Octavi Servitje, MD,^g Antonio García de Herreros, PhD,^h Vicenc García-Patos, MD,^b Ramon M Pujol, MD,ⁱ Inmaculada Hernández-Muñoz, PhD,^{h1} Agustí Toll, MDⁱ¹

^aServei de Dermatologia. Facultat de Medicina. Universitat de Barcelona. Hospital del Mar. Parc de Salut Mar. IMIM. Universitat Pompeu Fabra.
^bServei de Dermatologia. Hospital Universitari Vall d'Hebron. Universitat Autònoma de Barcelona.
^cDepartament de Matemàtiques. Universitad Nacional de Educación a Distancia UNED.
^dServei d'Urologia. Hospital del Mar. Parc de Salut Mar. IMIM.
^eServei de Dermatologia. Hospital Universitari St. Joan de Reus-Universitat Rovira i Virgili de Tarragona.
^fServei de Dermatologia Hospital Universitari de Bellvitge, IDIBELL.
^hCancer Research Program. IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona.
^fServei de Dermatologia. Hospital del Mar. Parc de Salut Mar. IMIM.
¹I.H-M. and A.T. contributed equally to this work.

Introduction and objectives

Penile squamous cell carcinoma (PSCC) is a rare tumor associated with high capacity to invade and metastasize, and with both Human Papilomavirus (HPV) -related and HPV-unrelated etiologies. The epithelial to mesenchymal transition (EMT) is a phenomenon fostered by many epithelial tumors that allows dissemination of malignant neoplastic cells and involves loss of intercellular adhesion (E-cadherin decrease), mesenchymal phenotype acquisition (Vimentin increase), and an enhanced migratory potential. We have investigated the presence of EMT markers in PSCCs and their correlation with high-risk HPV infection, metastatic risk and mortality.

Materials and methods

We retrospectively evaluated the presence of EMT markers in a series of 64 PSCCs and their correlation with high-risk HPV infection, metastatic risk and mortality. Expression of E-cadherin, Vimentin and the transcription factors Twist, Zeb1 and Snail were assessed by immunohistochemical staining, and HPV presence was detected by PCR amplification.

Results

Different E-cadherin expression patterns were observed in the distinct histopathological subsets of PSCC (Fig 1). Loss of membranous E-cadherin was observed in 45 out of 64 cases (70.3%) (Table 1). Nuclear or cytoplasmic E-cadherin expression could be observed in some of the cases that had lost membranous expression: nuclear expression was detected in 12 out of 45 cases (26,6%) and cytoplasmic expression in 5 cases out of 45 cases (11,1%). Nuclear E-cadherin expression was significantly associated with a greater mortality: 41,6% of the patients expressing nuclear E-cadherin died due to the disease versus 15,3% of other groups (p<0.05). Furthermore, the time of survival was lower in the group with nuclear E-cadherin (Figure 2a). We next analyzed Vimentin expression in the TMAs, and we determined the simultaneous loss of membranous E-cadherin expression and Vimentin over-expression, as a mean to quantify bona fide EMT. Using these two markers, an EMT was shown in 27 out of 62 cases (43,5%) (Figure 3) (two cases showing membranous E-cadherin were lost for Vimentin expression evaluation). Mortality was higher among cases showing EMT than in those without EMT (33% vs 11,4%; p=0,035), as also shown by the Kaplan-Meier analysis (p=0.05 – Figure 2b-).

The presence of HPV was associated with EMT (Figure 4), but no correlation was found between Zeb1, Twist or Snail expression and EMT or mortality.

Table 1: Different expression patterns of E-cadherin and Vimentin depending on the histopathological types of PSCC and the presence of HPV.

Histophatological type	HPV+	Membranous E-cadherin	Nuclear E-cadherin expression	Cytoplasmic E-cadherin expression	Expression of Vimentin
Usual (67%)	23%	1/10 (10%)	3/10 (30%)	2/10 (20%)	4/9 (44%)
	-77%	15/33 (45%)	3/33 (9%)	0	13/33 (39%)
Warty (6%)	100%	0/4 (0%)	0	0	3/4 (75%)
Verrucous (7%)	0%	3/5 (60%)	0	0	1/4 (25%)
Basaloid (6%)	100%	0/4 (0%)	2/4* (50%)	2/4* (50%)	1/4 (25%)
Sarcomatoid (4%)	0%	0/3 (0%)	3/3 (100%)	0	3/3 (100%)
Mixed basaloid/ usual-type (7%)	100%	0/5 (0%)	1/5 (20%)	1/5 (20%)	2/5 (40%)

^{*} These cases shown simultaniously cytoplasmic and nuclear E-cadherin expression.

Figure 1: A: Verrucous penile squamous cell carcinoma showing a normal membranous E-cadherin pattern; B: Warty PSCC showing a membranous E-cadherin loss; C: Usual type PSCC showing membranous E-cadherin loss; D: Basaloid PSCC showing nuclear and cytoplasmic E-cadherin expression; E: Mixed tumor showing membranous E-cadherin expression in the usual type component and cytoplasmic expression pattern in the basaloid component; F: Sarcomatoid PSCC showing nuclear E-cadherin. Original magnification x 100.

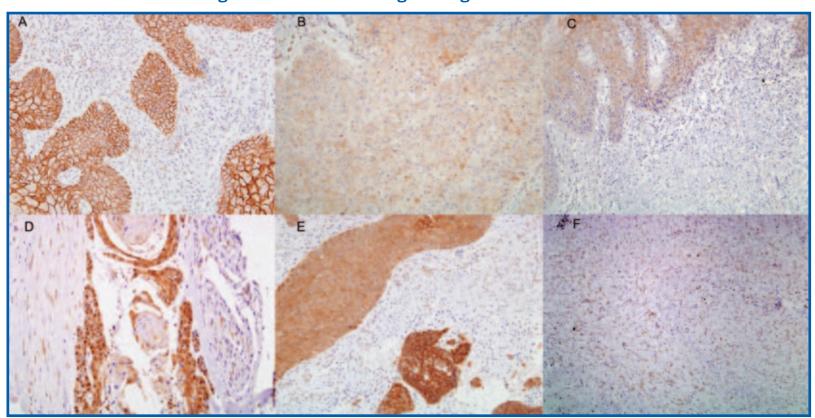


Figure 2: Kaplan-Meier analyses showing that a) nuclear E-cadherin expression is significantly associated with mortality (p<0,05) and, b) Epithelial to mesenchymal transition markers are also significantly associated with mortality (p=0.05).

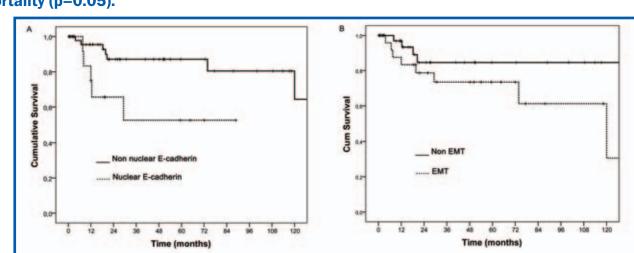


Figure 3: (A) Haematoxylin and eosin staining showing a verrucous PSCC with (B) membranous E-cadherin; (C) negative Vimentin expression (D) no TWIST expression and (E) no ZEB1 expression. (F) hematoxylin and eosin staining showing a sercomatoid PSCC with (G) nuclear E-cadherin expression; (H) Vimentin expression; (I) nuclear Twist expression and (J) nuclear ZEB1 expression. Original magnification x 100.

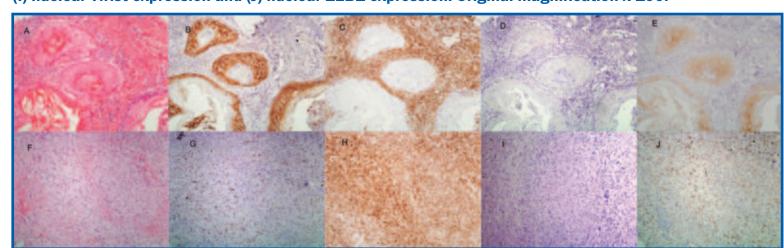
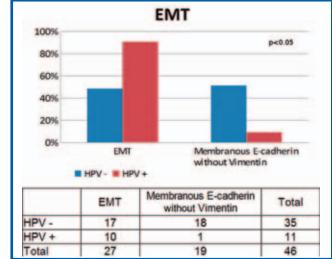



Figure 4: Epithelial to mesenchymal transition positivity is associated with Human papillomavirus infection status.

Conclusions